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Abstraet--A porous media model as a system of two interacting imaginary media is proposed to solve the 
problem of studying the process of heating of solar thermal station reactor, which is a large long tube filled 
with rock. The heating is the result of a motioned heat gas flow with the initial constant rate and 
temperature. The process is described by two one-dimensional non-stationary differential equations of heat 
transfer convec~:ion and complemented by the equation of mass conservation and temperature dependence 
for gas density. For the difference realization of obtained problems with the solution, which has a 
large gradient in a restricted area, a differential approximation method with artificial viscosity coefficient 
introduction is used. The behavior of a difference solution in the vicinity of area with abrupt temperature 
change, depending on introduced pseudo viscosity, is studied. The specific applied problem simpfified model 

with the constant coefficient equation, which allows essentially reduced computing time, has been used. 

INTRODUCTION 

To coordinate the requirements of power engineering 
and ecology, the problems of study and application 
of non-traditional energy sources are at present of 
particular interest. These include also direct use of 
solar energy. A part of solar power plants accumu- 
lating heat is the reaclor. For example, it is a large 25 
m long tube with a diameter of 14 m, which is filled 
with material having good capacity characteristics 
(granite rock) [1]. The reactor is operated in sequential 
removable regimes. 3?he first is the charging cycle, 
when motioned flow with a constant rate heats the 
rock when passing through it. The second--the dis- 
charging cycle--is a reverse process, when cold air, 
when passing in reverse direction through the rock is 
heated by it up to an operating temperature. 

A similar situation, which is intended to have 
maximum use of heat and its storage in large volumes, 
is common in many fields of research and technology. 
Various methods were employed in the mathematical 
modeling of these processes. We present a brief review 
of the literature on the solution of the above or similar 
problems [1-6]. We will first consider a specific applied 
solution of the problem and will formulate the class 
of analogous problems. Then we will describe and 
justify the method chosen by us. 

REVIEW OF LITERATURE 

A model of imaginary continuous medium often 
serves as an approximation in solving the problems of 
heterogeneous media. In the case of the above prob- 
lem, in refs. [2-5] the consideration of the total mass 

of rock loaded in the reactor as a certain unit body 
divided into sections along the direction of the gas 
flows and having a constant temperature has been 
proposed. In other works, for example refs. [1, 6], 
rock is shown as a discrete medium (a sphere with an 
equivalent diameter Dk) divided into sphere layers 
with a constant temperature. In each layer the equa- 
tion of the Fourier heat conductivity is considered for 
one sphere, assuming that the conditions are the same 
for each sphere in the fixed layer along the direction of 
gas flow. The particles of rock and gas have different 
temperatures, as they differ also in the various layers. 
Moreover, the dependence of flow thermal physical 
parameters on temperature is also taken into account 
in the coefficients of equations, i.e. the problem is 
nonlinear. In the case of the model described in refs. 
[1, 6] the important role is played by the heat transfer 
coefficient c¢, between each spherical particle of 
material and moving gas flow. The above coefficient 
in ref. [1] is found by taking into account the charac- 
teristics of the flow of gas and solid particles of the 
rock 

here 

= 1 + r,,/t~.",~cz)--~or'". " ' - '  ( I )  

~o = 0.332f Re°6/2Rk, 

Vm = pfv, Vffhs. 

Such formulation allows one to study this problem 
in sufficient detail. However, since separate equations 
are considered for each layer, this leads to the necessity 
of solving large stiff systems of equations which 
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NOMENCLATURE 

c heat capacity 
Fk sphere surface 
h spatial step 
hs height of one sphere layer 
m porosity 
Rk radius of the sphere 
T temperature 
To initial temperature of the two media 
T~ temperature of air blown 
v air velocity 
v0 initial velocity of air stream 
Vs mean flow velocity in one sphere layer 

V1 air volume around each sphere. 

Greek symbols 
inter-component heat transfer 
coefficient 

)~ air heat conductivity 
p density 
z time step. 

Subscripts 
f gas 
k rock. 

require lengthy computing time. In an attempt to take 
into account the temperature change of material along 
the radius of the reactor (in each layer), such for- 
mulation of the problem becomes bulky. 

DIFFERENTIAL FORMULATION OF PROBLEM 

In principle, we shall deal with other formulations 
of the problem for the solution of a similar problem 
with an account of the above technical difficulties. If 
one assumes that the porous body is two interacting 
imaginary media [7], modeling both the solid and 
gaseous (liquid) phases, the heat transfer process 
could be presented as a system of two equations 

I mcs pr ~ = -CrPt v grad Ty 

+div(2:-grad Tk)-]-a(Tk--Ty ) 

~r~ 
(1 -- m)c~pk ~ -  = diV(2k grad Tk) + ~ (Tf -  Tk). 

(2) 

The seeming simplicity of the above system and 
each of its parameters, 2 and ~ in particular, involves 
complex dependencies taking into account the proper- 
ties of all media. If the flow velocity is sufficiently 
large, heat transfer caused by convection considerably 
exceeds the heat transfer due to heat conductivity, 
which allows one to neglect the heat conductivity 
terms of equations (2). To investigate the polyphase 
mediums, such an approach is used in the description 
of fraction micromotion [8]. 

The analogous equation systems are also obtained 
by Shcherban et al. [9], when studying the processes 
of the one-dimensional filtration of heat carrier on 
a fractured medium under its thermal non-uniform 
conditions. When taking into account the dependence 
of heat carrier density on temperature, the equation 

of mass conservation and the dependence of density 
on temperature are added to the system of equations 

O& D 
Ot Ox (pjv) 

~T~ 
p~ck(1 --rn) ~ = --~( Tk-- T/) 

OT s- 0 
cypyrn ~ = --Cr ~x (vpi T[) + a( T k -  TI) 

pj- = f(~-). 

(3) 

The authors of ref. [9] demonstrated that this 
interpretation of the problem permits one to describe 
the given process of filtration with suffÉcient accuracy. 

The formulation of problems for finding tem- 
perature fields in oil beds, with an account of tem- 
perature difference of solid bed and filtrating liquid, 
may serve as other examples. The first similar for- 
mulations for thermally insulated beds were con- 
sidered in ref. [10], while the problem with an account 
of heat transfer with the surrounding substances is 
discussed in refs. [11-13]. 

Based on the above models for similar problems, 
we consider a suitable formulation, which is described 
by using a porous medium model as the system of 
interacting imaginary media. 

The 'gas-solid body' system is represented as two 
one-dimensional transient differential equations. In 
the equation of the substance, only heating of separate 
substance particles in each point of one-dimensional 
space due to the convective heat transfer of gas is 
considered, whereas heat conductivity and contact 
heat transfer between the particles are neglected. The 
system is supplemented by the equation of mass con- 
servation and temperature dependence for gas density, 
which allows one to take into account the change of 
flow velocity along the direction of motion 
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V 2 0 

(4) or~ 

- rn Opt O(Piv) 
8t 8x  

Ps = po/Tj,. 

The initial and boundary conditions may be written 
a s  

Tslx=o = T, (Pp)lx=o =PoVo 

Tsl ,=0=T0 T k l , = o = T o ,  (5) 

here P0 = PI(To) . 
To solve this system, a new variable--the mass vel- 

ocity G = ply--is introduced and system (4) could be 
written as 

t- 

mcf  8(GT~) O(GTI) 
v ~ + o  T;x 

1 [-v 3G 2 8G-] + + "  = 

C~Tk (4') 
(1--m)pkce ~ f -  = c t ( T f -  Tk) 

rn OG 8G 

v 8t - 8x 

Pr = po/Tf. 

It is clear that the first equation of the above system 
(4) gives form to the convective heat front in the air 
component, whereas the inter-component heat trans- 
fer coefficient c~ becomes the value determining the 
temperature distribution of both air and rocks. Taking 
into account how important this parameter is, various 
methods of its determination [5, 13, 15] were 
considered. We used a version, proposed in ref. [15], 
where the solution of non-stationary equation of heat 
conductivity for a sphere was employed to obtain 
an expression for finding the value of the volume 
coefficient of heat transfer. The average value of heat 
transfer was found from the conditions of thermal 
balance, which could be written as 

ct = 152klR ~. 

R k  is the radius o:F the sphere, i.e. the equivalent 
radius of rock stones 

In order to compare the proposed formulation of 
the problem with the one described in ref. [5], the 
remaining initial data relevant to an analogous pro- 
cess should be employed. Then, at Rk = 0.0125 m, 
ct = 123000 W m -2 grad. At such large values of ct, 
the temperature profile obtained as a result of the 

solution of the system of equations given in equations 
(4) and (5) with jump conditions at the tube entrance 
in an initial moment of time, would approach that of 
a rectangle, i.e. a practically discontinuous solution is 
obtained. 

STUDY OF DIFFERENCE PROBLEM 

A difference realization of the problem, in which 
the width of temperature front is estimated by several 
steps within space, might generate the oscillating solu- 
tions caused by dispersion errors of difference scheme. 
Besides, the schemes of the first order of accuracy are 
not sufficiently precise for calculating such problems. 
Hence, the difference realization of the system (4). 
Equation (5) is of particular attention. Since the 
method of solution of the second equation of equation 
(4) does not cause any difficulties, its choice in the 
range from exact analytical solutions to various dis- 
crete schemes was based on such criterion as speed of 
computation. We chose an implicit difference scheme 
'with weight' Krank-Nicolson type 

n + l  n T(k)j - T ( k ) g  _ O~ 

(1 --m)CkPk 

I n + l  n + l  n n × i[(T(~ s -- T(k)j ) +  (T( f ) j+ T(k)j)]. 

In order to solve the first equation of (4) we will use 
an approach based on the introduction of artificial 
viscosity (pseudo viscosity), which allows us to 
describe approximately almost the discontinuous 
solution. The behavior of the discrete solution in the 
vicinity of discontinuity depends essentially on the 
type of introduced pseudo viscosity, as well as on the 
scheme viscosity caused by the approximation error 
of the initial equation. Their effect can be evaluated 
by means of the differential approximation method 
[16-18] estimating the value of introduced viscosity. 
Differential approximation of difference scheme is an 
differential equation obtained from the difference 
scheme approximated by it. Hence, it is different for 
various difference approximations of the same equa- 
tion. In the case of the first equation (4) (with constant 
coefficients), where u = vo/m, the first differential 
approximation can be written in the form 

~Tj ~Ty 02TJ ~(Tk-- TD, 
PrO ~ + uPsci 8~x - a 8x ~ = 

where a is the value of introduced pseudo viscosity 
assuming the following values [i 9]: 

when using the scheme with one-side differences 

:) 
when using the scheme of the second order of pre- 

cision (Lacks-Vendrof type) 
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h2( +% 
a = ~  1 -  h2 j .  

Here the result of using notion of the first differ- 
ential approximation of difference scheme is sub- 
stantiation of fact that introduction of diffusion terms 
with artificial viscosity coefficient does not change the 
physical formulation of the problem equations (4) and 
(5), but serves as a means of realization of the first 
equation from (4'). 

Finally, the difference scheme for the first and third 
equation of (4) is written as 

G,j+IT~+,  , n V , F ,  ~ ~ _ T  ~ i - G j  T j  + G j  T/+ i j -  1 

2m L 2h 
_ _ T n + l ]  n 2 n+ n 

J l + G / +  I ~-~++11 .j , -Gj 
T 

+ V ~ ' j  j J _ I 

2 L h ~ 

T ' + I - 2 T ~ + I  " T "+ lq  V'et  
- J + ~ / = ~ J  (T~+I-T~) (6) 

+ / - i  h 2 J m c /  

G] +' - G~ VTFG7 --  G7 1 G~' +' -- G} +_ 1]  

- m ,  - 2 m L ~ +  ~ J' 

(7) 

TT, + ~ is expressed through the second equation of (4), 
G~ + ~ is found from equation (7) and T7 + ~ from equa- 
tion (6). 

This scheme yields a stable solution, i.e. moving 
temperature wave. With time, the temperature front 
curve becomes more slanting, which is due to heat 
transfer from air to a solid substance which results 
in a gradual heating of the solid phase. Additional 
modifications of the difference scheme (6) led to hav- 
ing stable non-oscillating solutions. 

A certain decrease of pseudo viscosity coefficient 
can be reached by introducing a mass operator for 
time derivative [19]: 

~?T T "+t " T~ +l " 
M ~ - - = 3  J - ' - T J - '  + ( 1 - 2 6 )  -T;!  

a t  "C "C 

+ 6  TT~# - : rL ,  
"C 

M~ = {&(1--26),6} 6 ~ 0.25. 

Here a > 0.1 leads to the rise of the temperature 
profile up to and after the front line. 

The effect of introduced pseudo viscosity can be 
diminished by means of the terms it pays of anti- 
diffusion flows [20]: 

The coefficients fl,+~/2 are non-negative, confine 
anti-diffusion and are chosen in the following way: 

fl(R) = 

0,  R ~ O  

( a + b ( 1 - 0 ) ) R  0 < R < 1 - ~  
( a + b ) d - O )  

a + b R  
I R - 1 1 ~ < 0  

a + b  

(a + b(1 - ~ ) ) R  - 2ab  
1 + ~ 9 < R < 2  

( a + b ) ( 1 - 0 )  

~<2 R>~2 

where 

_ v j -  rj_,  T j + I - T /  
R j + , / z  T j + l - - ~  R ' - ' " 2 - T - j - - T ,  1' 

,9, a, b are the constants, 0 < O < 1, a + b # 0. 
The effect of diffusion term can be decreased by 

varying the three additional parameters: a, b, 0. 
However, the fundamental improvement men- 

tioned in the above modifications of the difference 
scheme (6) is not given. This allows one to assume 
that in formulating the problem of equations (4) and 
(5), the first equation is sufficiently fully represented 
by means of scheme (6) realized with a Thomas 
algorithm [19]. 

ANALYSIS OF RESULTS 

To compare the results obtained by using the system 
of equations (4) and (5) with the solution of the prob- 
lem for the analogous case in ref. [1], the following 
initial data were applied [1]: 

T0= 20° C  TI =550°C v 0 = 2 . 2 m s  z 

2 k = l . 7 W m - ~ g r a d .  m = 0 . 5  

Pk = 2894kg m-3 Ck = 795Jkg J grad. 

P r = 3 4 8 . 3 / T k g m  3 c f = 1 0 4 0 J k g  1grad. 

A series of calculations were performed at various 
initial parameters. The numerical value of the pseudo 
viscosity coefficient ranges from 0.45 to 0.55 at the 
given initial data. The analogous range of values is in 
other sources [19, 20] where the estimates, correcting 
the value of introduced pseudo viscosity are reduced. 
When conducting a numerical experiment, it may be 
concluded that the dumping of the oscillating solution 
occurs at these values. At a > 0.55, the width of the 
temperature front smearing increases. 

Figure 1 shows the motion of temperature front 
along the tube at a = 0.55, with curves demonstrating 
temperature distribution every 2 h. As seen from Fig. 
1. the temperature mark T =  300°C moves with a 
constant velocity. In 6 h after the heated air is blown 
in, the exit temperature starts gradually growing, until 
reaching the entrance temperature. 

The next two figures characterize some particular 
or numerical part of calculation, in particular, the 
effect of pseudo viscosity. 
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Fig. 1. Transient distribution of rock temperature in 2 h, 
basic calculation a = 0.55. 
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Fig. 4. Transient distribution of rock temperature for system 
with variable coefficients and with constant coefficients 

(asterisk). 

As seen f rom Fig. 2, at  a decrease of  a (a = 0.25), 
the width  of  tempera ture  f ront  smearing decreases, 
but  the solution becomes unstable.  

Figure 3 shows the effect of  the value of  the pseudo 
viscosity coefficient i;a a wider range from a = 0.055 
(curve 1--osci l la t ing solution) to a = 1.1 (curve 3 - -  
the t empera ture  f ront  smearing),  due to the increase 
of  the effect of  diffusion term, curve 2 - - a t  a -= 0 .55- -  
basic calculation. 

Figure 4 gives the results of  calculat ion at  a = 0.45 
of  system (4) and  system of  equa t ion  with the cons tan t  
coefficient, i.e. wi th  subst i tu t ion of  the first equa t ion  
from equa t ion  (4) by equa t ion  (4"). This curve is 

600 ] ...... 

9. 400 

°E 20001 < 

Length of tube [m] 

Fig. 2. Transient distribution of rock temperature with basic 
calculation (curve with asterisk) and with varied pseudo 

viscosity coefficient--a = 0.25. 
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0 5 l0 15 20 25 
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Fig. 3. Transient distribution of rock temperature with basic 
calculation (curve with asterisk) and with varied pseudo 

viscosity coefficient--a = 0.055 and a = 1.1 (dotted line). 

marked  by an  asterisk. The results show tha t  for the 
present  p rob lem the system of  equat ions  with cons tan t  
coefficient can be used when  conduct ing  a calculat ion 
of  specific applied problems,  which essentially reduces 
comput ing  time. 

CONCLUSION 

( l )  Fo r  the formula t ion  of  a problem for the heat-  
ing of  a solar thermal  s ta t ion reactor,  a porous  media  
model  as a system of  interact ing imaginary  media  is 
used. 

(2) The in te rcomponen t  heat  t ransfer  coefficient is 
impor t an t  in the format ion  of  the convective heat  
f ront  and in the choosing of  a way for its deter- 
minat ion.  

(3) For  the obta ined  difference p rob lem with the 
solution,  which has  a large gradient  in restricted areas, 
the differential approx imat ion  me thod  is used, which 
allows one to in t roduce an  artificial viscosity 
coefficient and  estimate this influence on  the behavior  
of  a difference solution. The proposed range of  values 
of  pseudo viscosity coefficient leads to the dumping  of  
an  oscillating solut ion and  for the decreasing of  the 
width  of  the tempera ture  f ront  smearing. 
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